More About Motion

In this section, we will consider the motion of a particle that is moving either
“two-dimensionally” (in a plane) or “three-dimensionally” (in space). Its path is a curve,
known as the curve of motion. This curve is defined either by a set of parametric equations
or by a single vector equation. In either case, we use ¢ as our parameter, representing time.
Any particular value of t may be referred to as an “instant.”

Two-Dimensional Motion

Motion along a curve can be described by a pair of parametric equations, x = x(¢), y = y(¢).
At any time ¢, the particle is located at the point P, = (x(¢),y(¢)), whose position vector is
r(¢) =< x(1),y(¢t) >=x(®)i+ y(r)j. This vector equation is the particle’s position function.

The particle’s position at time 1 = 0 is Py = (x(0),»(0)), which is known as the particle’s
initial position or starting point.

The magnitude of r(¢) is the distance of the particle from the origin. Note that
r(d)| = Jx(®)? +y(®)?*. This can be denoted r(¢). Itis a scalar-valued function (whereas r(¢)
is a vector-valued function).
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scalar-valued function (whereas v(¢) is a vector-valued function).

At any value of ¢, the particle is located at the point P,. If, at this instant, the particle’s speed
is 0 (i.e., if its velocity is 0), then the curve of motion has a a cusp or kink or sharp turn at
P,. On the other hand, if the speed is not 0 (i.e., if its velocity is a nonzero vector), then the
particle is said to have smooth motion, or to be moving smoothly, at this instant, and the
curve of motion will have a tangent line at this point. In this context, the point P, is referred
to as the point of tangency. To write an equation for the tangent line, we use P, as the
initial point of the line and we use v(¢) as the direction vector for the line. Bear in mind, this
gives us a directed line, i.e., a line with a specified orientation. The positive direction of
the tangent line is the direction of v(¢), and the opposite direction is the negative direction.
The direction of v(¢) is known as the (instantaneous) direction of motion for the particle.
Any nonzero vector having the same direction as v(¢#) may be referred to as a tangent
vector for the particle at the point P,. There are infinitely many such vectors, all of which
are positive scalar multiples of each other. The velocity vector, v(z), is the unique tangent
vector whose length is equal to the particle’s speed, v(¢).



Recall that any nonzero vector divided by its own magnitude gives us a unit vector (i.e., a
vector with length 1) having the same direction. Thus, if the velocity vector is nonzero,
dividing it by the speed will give us a unit vector in the direction of motion. In other words,

:Eg is the unit vector in the direction of v(¢). It is referred to as the unit tangent vector at

the point P,, and is denoted T(¢). The unit tangent vector is undefined when the speed is
zero.

At any value of ¢, if speed is nonzero, then v(¢) and T(¢) are nonzero vectors and can be
represented as directed line segments. Although any nonzero vector may be placed at any
starting point, we typically visualize v(¢) and T(¢) as being placed so that each has P, is its
tail. Then the tip of each vector will lie along the tangent line (in fact, the directed line
segment for each vector will lie entirely along the tangent line). Both tips will lie on the
same side (the positive side) of the tangent line. Since T(¢) is a unit vector, its tip will lie a
distance of exactly one unit from P,. The distance between P, and the tip of v(¢) will of
course be the speed, v(7).

For nonzero speed, v(¢) = v(t)T(¢), i.e., the velocity vector is a scalar multiple of the unit
tangent vector, where that scalar is the speed of motion.

The particle’s acceleration function is a(z) = r//(¢) = < x//(¢),y!'(t) > or < %, % > or
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Before we proceed, let us summarize the formulas discussed so far. For brevity, we will
omit “(z)”. Also included are a few variations that will prove useful...
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T(¢) is a vector-valued function of time ¢, but it is always a vector with a fixed length
(namely, length one). Hence, as time varies, the only thing about T(¢) that can change is its
direction. The rate at which our particle changes direction is found by differentiating T(¢)
with respect to time, in other words, by finding T/(¢). But bear in mind, the derivative of a



vector-valued function is anothe vector-valued function. If we wish to express the rate of
direction change as a scalar, then we compute the magnitude of T/(z).

Since T(¢) = ﬁv(l), we apply the Product Rule, giving us
TI(0) = (<5 )v@) + v = (<5 )v) + ().

Since ﬁ — (/(6)2 +y/(£)?)""*, we apply the Chain Rule, giving us

(<5 ) = =L + /(D) 2@ ()x11(1) + 2/ (0y11() =
—( (O +yI(0)2) P O (8) + YOI (D) =
—v() 2 (X (O)x!1(t) + Y (! (1)).

Now we have T/(1) = —v(t) 3 (x!(6)x!I(£) + y!()y!'(2))v(2) + v()'a(f)
= v(t)ta(e) — v(O) ! (OxI1(E) + Y (OY!1(2) )v(£)
= ()2 + Y102 LD +y(D)2)ar) — (K Ox(@) + YOy () (E)]

Since v(¢) = JxI(D)> +y/(t)*, v()? = x/(t)> +y!()>. Thus, we may write
TI() = (v()?) () a(t) — @ Ox!1(0) + Y (1) v(2)],

which simplifies to T/(¢) = v(£)3[v(£)2a(t) — (K (Ox1(E) + V' EYI())V(D)]
For brevity, we may write T/ = v>3[v2a — (x/x!! + yly!l)v],
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Note that x/x// + y/y!l = v +a. Thus, T/ =

Since v? = v - v, we could also write T/ = 12—y
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When computing the magnitude of a vector, a positive scalar coefficient will factor out.
Thus,

T/ = L[(v-v)a - (v-a)v|, or (D> + (0> 2| (v+v)a — (v-a)v].

To illustrate, suppose a particle is moving along the parabola y = x? with position function
r(t) =< t,t> >. Then:

r(t) = yt2 +t*

v(t) =< 1,2t >

v(e) = J1+47 = (1+4)"?

a(r) =<0,2 >

T() = 1+4t2 -1/2 < 1.2t>= <1,2¢>
( ) ( ) ’ J1+4£2

v(6)2 = 1+4¢2, v(£)® = (1 +412)32, and x/x! + yly!l = (1)(0) + (2£)(2) = 4¢, so

_ (1+4)a - 4wy
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The numeratoris (1 +412) < 0,2 > -4t < 1,2t >=< 0,2+ 82 > — < 41,8 > =< —41,2 >,



so T/(f) = (fj,’;i; or (1 +4r2)732 < 412 >

T/(0)] = (1 +42) )< —4£,2 > = (1 +42) 21622 + 4 = 2(1 +42) 21 + 42 = -2
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Three-Dimensional Motion

Motion along a curve can be described by three parametric equations, x = x(¢), y = y(?),
z = z(t). Atany time ¢, the particle is located at the point P, = (x(¢),(¢),z(¢)), whose
position vector is r(¢) = < x(¢),y(t),z(¢t) > = x(¢)i + y(t)j + z(t)k. This vector equation is
particle’s position function.

The particle’s initial position is Py = (x(0),(0),z(0)).

The particle’s distance from the origin is () = [r(r)| = Jx(1)% + y(t)> + z(1)%.

The particle’s velocity function is v(¢) = r/(r) = < x/(£),y/(£),2/(t) > or < 4 L & 5 of
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The particle’s speed function is

W) = V0| = WO O+ 707 = [(4)7+ (L) + (£)*
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For nonzero speed, the unit tangent vector is T(¢) = R

For nonzero speed, v(¢) = v(£)T(¢).



The particle’s acceleration function is a(r) = r//(t) =< x!II(t),y!(t),z!'(¢) > or
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For brevity, we may write T/ = v=[vZa — (x/x/! + y/y!l + z/zI1)v],
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or we may write T/ =



